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Exercise 2.2.14

(Energy-balance model for Earth’s temperature) Climate scientists use a hierarchy of
mathematical models, ranging from very detailed to very simplified. At one end of the spectrum
are comprehensive models containing billions of variables about the state of the atmosphere and
oceans, also taking account of sea ice, terrestrial vegetation, ecosystems, biogeochemical cycles
(such as the carbon cycle), and atmospheric chemistry. At the other extreme are simple
conceptual models. These are a lot easier to understand, yet they can still provide valuable
insights.

One simple model summarizes the climate in a single variable: the mean surface temperature of
the Earth, averaged over the entire globe. The model ignores differences in the atmosphere’s
composition, as well as differences among continents and oceans, topography, and all other local
features. Its dynamics are governed by the following equation:

C
dT

dt
= Ein − Eout

= (1− α)Q− ϵσT 4.

Here C is the heat capacity of the Earth, and T is the mean surface temperature (measured in
degrees Kelvin) at time t. This is called an energy-balance model because it assumes the mean
temperature changes in response to the amount of energy reaching the Earth from the Sun (Ein,
proportional to the solar irradiance parameter Q) minus the energy emitted back out into the
stratosphere (Eout, assumed to follow the Stefan-Boltzmann law). The parameter 0 < α < 1 is
called the albedo; it’s the fraction of incoming solar radiation that the Earth reflects. Its
numerical value is different for ice, water, and land, but those details are averaged out in this
simplified model. Likewise, 0 < ϵ < 1 accounts in an averaged way for the fact that some of the
outgoing radiative energy does not make it to outer space; instead, a fraction of it gets absorbed
by greenhouse effects in the atmosphere.

a) Find the model’s prediction for Earth’s mean surface temperature T ∗ in steady state,
expressed in terms of the other parameters.

b) Show graphically that T ∗ is a stable fixed point.

c) Sketch T ∗ versus Q.

d) Estimate the numerical value of T ∗ in degrees Kelvin. (You may assume
Q = 342 Watts/(meter)2, α ≈ 0.3, σ = 5.67× 10−8 Watts/(meter)2K4, and ϵ ≈ 0.62.)

This analysis is from Kaper and Engler (2013).

[Write K as (Kelvin) to be consistent.]

Solution
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Part a)

Set dT/dt = 0 to get an equation for the steady-state temperature T ∗.

C
dT

dt
= (1− α)Q− ϵσT 4

0 = (1− α)Q− ϵσT ∗4

Solve for T ∗.

ϵσT ∗4 = (1− α)Q

T ∗4 =
(1− α)Q

ϵσ

T ∗ =
4

√
(1− α)Q

ϵσ

Part b)

Below is a plot of Ṫ versus T . Wherever the graph is above the horizontal axis, the flow moves to
the right, and wherever the graph is below the horizontal axis, the flow moves to the left.

This makes T ∗ a stable equilibrium point; it’s indicated on the graph by a filled-in circle.

www.stemjock.com



Strogatz NDC 3e: Exercise 2.2.14 Page 3 of 3

Part c)

Below is a plot of T ∗ versus Q for α = 0.3, ϵ = 0.62, and σ = 5.67× 10−8.

Part d)

If Q = 342 W/m2, α ≈ 0.3, σ = 5.67× 10−8 W/m2K4, and ϵ ≈ 0.62, then

T ∗ = 4

√
(1− 0.3)(342)

(0.62)(5.67× 10−8)
K ≈ 300 K.
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